.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_paper/03_compute_transfreq.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_paper_03_compute_transfreq.py: Part 4: Compute transition frequency ==================================== Compute the theta-to-alpha transition frequency with transfreq and with the classical Klimesch's method. .. GENERATED FROM PYTHON SOURCE LINES 8-16 .. code-block:: default from transfreq import (compute_transfreq, compute_transfreq_klimesch, compute_transfreq_minimum) import os.path as op import os import pickle .. GENERATED FROM PYTHON SOURCE LINES 17-18 Define data paths .. GENERATED FROM PYTHON SOURCE LINES 18-35 .. code-block:: default # Local folder where to store the output of the analysis cwd = os.getcwd() data_path = os.path.join(cwd, 'transfreq_data_preproc') psds_path = op.join(data_path, 'psds') if not os.path.exists(psds_path): raise Exception( 'Cannot find data in {}. Please compute power spectra first.'.format( psds_path)) with open(op.join(data_path, 'psds', 'data_rest.pkl'), 'rb') as f_rest: data_rest = pickle.load(f_rest) with open(op.join(data_path, 'psds', 'data_task.pkl'), 'rb') as f_task: data_task = pickle.load(f_task) .. GENERATED FROM PYTHON SOURCE LINES 36-37 Transition frequency with transfreq .. GENERATED FROM PYTHON SOURCE LINES 37-49 .. code-block:: default methods = [1, 2, 3, 4] for subj in data_rest.keys(): for ses in data_rest[subj].keys(): psds = data_rest[subj][ses]['psds'] freqs = data_rest[subj][ses]['freqs'] ch_names = data_rest[subj][ses]['ch_names'] data_rest[subj][ses]['tfbox'] = {} for meth in methods: data_rest[subj][ses]['tfbox'][meth] = \ compute_transfreq(psds, freqs, ch_names, alpha_range=None, theta_range=None, method=meth, iterative=True) .. GENERATED FROM PYTHON SOURCE LINES 50-51 Transition frequency with Klimesch's method .. GENERATED FROM PYTHON SOURCE LINES 51-59 .. code-block:: default for subj in data_rest.keys(): for ses in data_rest[subj].keys(): psds_rest = data_rest[subj][ses]['psds'] psds_task = data_task[subj][ses]['psds'] freqs = data_rest[subj][ses]['freqs'] data_task[subj][ses]['tf_klimesch'] = \ compute_transfreq_klimesch(psds_rest, psds_task, freqs) .. GENERATED FROM PYTHON SOURCE LINES 60-61 Transition frequency with minimum method .. GENERATED FROM PYTHON SOURCE LINES 61-68 .. code-block:: default for subj in data_rest.keys(): for ses in data_rest[subj].keys(): psds_rest = data_rest[subj][ses]['psds'] freqs = data_rest[subj][ses]['freqs'] data_rest[subj][ses]['tf_minimum'] = \ compute_transfreq_minimum(psds_rest, freqs) .. GENERATED FROM PYTHON SOURCE LINES 69-70 Save data (overwrite existing files) .. GENERATED FROM PYTHON SOURCE LINES 70-76 .. code-block:: default data_rest_file = open(op.join(data_path, 'psds', 'data_rest.pkl'), "wb") data_task_file = open(op.join(data_path, 'psds', 'data_task.pkl'), "wb") pickle.dump(data_rest, data_rest_file) data_rest_file.close() pickle.dump(data_task, data_task_file) data_task_file.close() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.000 seconds) .. _sphx_glr_download_auto_paper_03_compute_transfreq.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 03_compute_transfreq.py <03_compute_transfreq.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 03_compute_transfreq.ipynb <03_compute_transfreq.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_