:orphan: .. _sphx_glr_auto_paper: .. _paper: Reproducing paper results ========================= The following scripts allow to preprocess the open-source data set used in our paper [1]_, and to reproduce the corresponding results. The data set is downloaded from the OpenNeuro repository, accession number: ds003490 [2]_. To run the analysis, download all codes in this page in the same folder. Then, please add to the folder the requirements.txt file at this `link `_. The results of the paper can be obtained by running the following commands in a terminal. .. code:: python3 -m venv transfreq_env source transfreq_env/bin/activate # In Windows replace the previous command with # transfreq_env\Scripts\activate pip install --upgrade pip python3 -m pip install -r requirements.txt pip install transfreq python3 00_fetch_data.py python3 01_preprocessing.py python3 02_psd.py python3 03_compute_transfreq.py python3 04_plots.py .. [1] E. Vallarino, S. Sommariva, D. Arnaldi, F. Famà, M. Piana, F. Nobili. Transfreq: a Python package for computing the theta-to-alpha transition frequency from resting state EEG data. Submitted. .. [2] J.F. Cavanagh, P. Kumar, A.A. Mueller, S.P. Richardson, A. Mueen. Diminished EEG habituation to novel events effectively classifies Parkinson’s patients. Clinical Neurophysiology 129, 409–418 (2018). .. raw:: html
.. only:: html .. figure:: /auto_paper/images/thumb/sphx_glr_00_fetch_data_thumb.png :alt: Part 1: Fetch data :ref:`sphx_glr_auto_paper_00_fetch_data.py` .. raw:: html
.. toctree:: :hidden: /auto_paper/00_fetch_data .. raw:: html
.. only:: html .. figure:: /auto_paper/images/thumb/sphx_glr_01_preprocessing_thumb.png :alt: Part 2: Preprocessing :ref:`sphx_glr_auto_paper_01_preprocessing.py` .. raw:: html
.. toctree:: :hidden: /auto_paper/01_preprocessing .. raw:: html
.. only:: html .. figure:: /auto_paper/images/thumb/sphx_glr_02_psd_thumb.png :alt: Part 3: Compute power spectra :ref:`sphx_glr_auto_paper_02_psd.py` .. raw:: html
.. toctree:: :hidden: /auto_paper/02_psd .. raw:: html
.. only:: html .. figure:: /auto_paper/images/thumb/sphx_glr_03_compute_transfreq_thumb.png :alt: Part 4: Compute transition frequency :ref:`sphx_glr_auto_paper_03_compute_transfreq.py` .. raw:: html
.. toctree:: :hidden: /auto_paper/03_compute_transfreq .. raw:: html
.. only:: html .. figure:: /auto_paper/images/thumb/sphx_glr_04_plots_thumb.png :alt: Part 5: Plot results :ref:`sphx_glr_auto_paper_04_plots.py` .. raw:: html
.. toctree:: :hidden: /auto_paper/04_plots .. raw:: html
.. only:: html .. figure:: /auto_paper/images/thumb/sphx_glr_preprocessing_info_thumb.png :alt: Preprocessing routine :ref:`sphx_glr_auto_paper_preprocessing_info.py` .. raw:: html
.. toctree:: :hidden: /auto_paper/preprocessing_info .. raw:: html
.. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-gallery .. container:: sphx-glr-download sphx-glr-download-python :download:`Download all examples in Python source code: auto_paper_python.zip ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download all examples in Jupyter notebooks: auto_paper_jupyter.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_